Custom Search
Showing posts with label turbine. Show all posts
Showing posts with label turbine. Show all posts

Wind Power Plant

Sunday, May 8, 2011 | | 13 comments

Sponsored Ads


Wind Power


Wind is a form of solar energy. Wind power all starts with the sun. When the sun heats up a certain area of land, the air around that land mass absorbs some of that heat. At a certain temperature, that hotter air begins to rise very quickly because a given volume of hot air is lighter than an equal volume of cooler air. 

Air Circulation

Faster-moving (hotter) air particles exert more pressure than slower-moving particles, so it takes fewer of them to maintain the normal air pressure at a given elevation When that lighter hot air suddenly rises, cooler air flows quickly in to fill the gap the hot air leaves behind. That air rushing in to fill the gap is wind.

If you place an object like a rotor blade in the path of that wind, the wind will push on it, transferring some of its own energy of motion to the blade. This is how a wind turbine captures energy from the wind.



Principles of Wind Power Plant
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.

So how do wind turbines make electricity? Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. Take a look inside a wind turbine to see the various parts.

Inside The Wind Turbine


Inside The Wind Turbine


Anemometer:
Measures the wind speed and transmits wind speed data to the controller.

Blades:
Most turbines have either two or three blades. Wind blowing over the blades causes the blades to "lift" and rotate.
Brake:
A disc brake, which can be applied mechanically, electrically, or hydraulically to stop the rotor in emergencies.

Controller: 
The controller starts up the machine at wind speeds of about 8 to 16 miles per hour (mph) and shuts off the machine at about 55 mph. Turbines do not operate at wind speeds above about 55 mph because they might be damaged by the high winds.
Wind Farm

Gear box:
Gears connect the low-speed shaft to the high-speed shaft and increase the rotational speeds from about 30 to 60 rotations per minute (rpm) to about 1000 to 1800 rpm, the rotational speed required by most generators to produce electricity. The gear box is a costly (and heavy) part of the wind turbine and engineers are exploring "direct-drive" generators that operate at lower rotational speeds and don't need gear boxes.

Generator:
Usually an off-the-shelf induction generator that produces 60-cycle AC electricity.
High-speed shaft:
Drives the generator.

Low-speed shaft:
The rotor turns the low-speed shaft at about 30 to 60 rotations per minute.

Nacelle:
The nacelle sits atop the tower and contains the gear box, low- and high-speed shafts, generator, controller, and brake. Some nacelles are large enough for a helicopter to land on.

Pitch:
Blades are turned, or pitched, out of the wind to control the rotor speed and keep the rotor from turning in winds that are too high or too low to produce electricity.

Wind Turbines Offshore
Rotor:
The blades and the hub together are called the rotor.

Tower:
Towers are made from tubular steel (shown here), concrete, or steel lattice. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity.

Wind direction:
This is an "upwind" turbine, so-called because it operates facing into the wind. Other turbines are designed to run "downwind," facing away from the wind.

Wind vane:
Measures wind direction and communicates with the yaw drive to orient the turbine properly with respect to the wind.

Yaw drive:
Upwind turbines face into the wind; the yaw drive is used to keep the rotor facing into the wind as the wind direction changes. Downwind turbines don't require a yaw drive, the wind blows the rotor downwind.

Yaw motor:
Powers the yaw drive.


Types of Wind Turbines


Modern wind turbines fall into two basic groups: the horizontal-axis variety, as shown in the photo above, and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. 

Horizontal-axis wind turbines (HAWT) typically either have two or three blades. These three-bladed wind turbines are operated "upwind," with the blades facing into the wind.

Vertical-axis wind turbines (VAWTs)
Vertical-axis wind turbines (VAWTs) are pretty rare. The only one currently in commercial production is the Darrieus turbine.  

In a VAWT, the shaft is mounted on a vertical axis, perpendicular to the ground. VAWTs are always aligned with the wind, unlike their horizontal-axis counterparts, so there's no adjustment necessary when the wind direction changes; but a VAWT can't start moving all by itself -- it needs a boost from its electrical system to get started. 

Instead of a tower, it typically uses guy wires for support, so the rotor elevation is lower. Lower elevation means slower wind due to ground interference, so VAWTs are generally less efficient than HAWTs. On the upside, all equipment is at ground level for easy installation and servicing; but that means a larger footprint for the turbine, which is a big negative in farming areas.

Size of Wind Turbines


3.6 MW Wind Power Plant
Utility-scale turbines range in size from 100 kilowatts to as large as several megawatts. Larger turbines are grouped together into wind farms, which provide bulk power to the electrical grid.

Single small turbines, below 100 kilowatts, are used for homes, telecommunications dishes, or water pumping. Small turbines are sometimes used in connection with diesel generators, batteries, and photovoltaic systems. These systems are called hybrid wind systems and are typically used in remote, off-grid locations, where a connection to the utility grid is not available.
Wind Turbine Size Compared with a Man

Solar Wind Bridge Consept

The hybrid system (combining solar and wind power) proposed allows for a continuous production of Energy. The project is based on the idea of utilizing the space between the pillars of the existing viaducts to house a system of wind-powered turbines which will be integrated into the structure.

The solar park is conceived as a green “promenade”, along which there alternate panoramic viewing points and entirely self-sufficient solar greenhouses. As with city farms, visitors to the park will be able to stop and buy the local produce grow in these greenhouses.

The asphalt will be substituted with a technological road surface of a kind already in use in the USA (“solar roadways”). The road surface itself will, therefore, collect energy as a part of a power-generating system composed of a dense grid of solar cells coated with a transparent ad highly resistant form of plastic.

The entire system is capable of producing around 40 million kWh per annum – enough energy to provide power for approximately 15.000 families.

This Solar Wind concept is the brainchild of designers Francesco Colarossi, Giovanna Saracino and Luisa Saracino, who came second in a competition to dream up a bridge spanning the Italian areas of Bagnara and Scilla.

Solar Roadways


Reference Books: Wind Power

Wind Turbine Technology: Fundamental Concepts in Wind Turbine Engineering, Second EditionWind-Diesel and Wind Autonomous Energy SystemsReaping the Wind: How Mechanical Wizards, Visionaries, and Profiteers Helped Shape Our Energy Future
Wind Turbine Technology: Fundamental Concep...
by David A. Spera

Wind-Diesel and Wind Autonomous Energy Syst...

Reaping the Wind: How Mechanical Wizards, V...
by Peter Asmus

Coal-Fired Steam Power Plant

Thursday, November 18, 2010 | | 3 comments

Sponsored Ads


The modern technology used for burning coal to generate electricity has evolved over a period of more than a century and until awareness grew of the environmental damage coal burning could produce, the coal-fired power station developed in a single direction. The basic principle underlying this type of power station is to burn coal in air and capture the heat released to raise steam for driving a steam turbine. The rotation of this steam turbine, in turn, drives a generator; the net result is electricity.

The traditional coal-fired power plant comprises two basic components. The first component is a furnace boiler designed to burn the coal and capture the heat energy released using a system of circulating water and steam. The second part of the system is a steam turbine generator which converts the heat energy captured by the steam into electrical energy. In other words, chemical energy held within the coal is first translated into heat energy and then into mechanical energy, and finally into electrical energy. Modern plants also include additional units to remove dust and acid emissions from the flue gases before they are released into the atmosphere.




 

Boiler

A power plant boiler is a device for converting the chemical energy in coal into heat energy and then transferring that heat energy to a fluid, steam. The efficiency of a coal-fired power plant increases as the pressure and temperature of the steam increases. This has led to a demand for higher temperatures and pressures as technology has developed and this has required, in turn, the development of materials with higher performance under increasingly stressful conditions. The most advanced boilers develop steam with a pressure of around 250bar and a temperature of 600°C.

Early boilers were made from iron, but as the demands on the system increased, special steels were used that could resist the conditions encountered in the power plant. These now dominate in modern boilers. Even so, oxygen dissolved in the water circulating within the boiler pipes can cause serious corrosion in steel at the elevated temperatures and pressures to which it is exposed, so the boiler water must be deoxygenated.

The first part of the boiler is a furnace in which combustion takes place. In the most common type of boiler, pulverised coal is injected with a stream of air into the furnace in a continuous process through a device known as a burner. The coal burns, producing primarily carbon dioxide while incombustible mineral material (ash) falls to the bottom of the furnace where it can be removed (some is also carried away by the hot combustion gases).

The heat generated during combustion (the temperature at the heart of the furnace may be as high as 1500°C) is partly radiant and partly convective, the latter carried off by the hot combustion gases. The radiant heat is collected at the walls of the furnace where water is circulated in pipes. Covective heat in the combustion gases is captured in bundles of tubes containing either water or steam which are placed in the path of the flue gas as it exits the furnace.

In a conventional boiler there is a drum positioned appropriately within the steam–water system containing both water and steam so that steam can develop as the temperature of the fluid rises. The most advanced designs, however, operate at such high temperatures and pressures that they do not pass through a stage in which water and steam co-exist. In these boilers the water turns directly to steam within the water tubes. This type of boiler exploits what is called a supercritical cycle, called so because the thermodynamic fluid (the water) enters what is known as the supercritical phase without passing through a condition in which both water and steam co-exist.

The boiler watertubes in the exhaust gas path are frequently divided into a number of different sections. (These sections have names, such as economiser, reheater or superheater.) The water or steam passes through them is a specific order determined by the design of the steam cycle. Traditional pulverised-coal boilers have been built with outputs of up to 1000MW.

Steam turbine

The steam turbine is the primary mechanical device in most conventional coal-fired power stations. Its job is to convert the heat energy contained in the steam exiting the boiler into mechanical energy, rotary motion. The steam turbine first appeared in power applications at the end of the nineteenth century. Before that steam power was derived from steam-driven piston engines.

The steam turbine is something of a cross between a hydropower turbine and a windmill. It, like them, is designed to extract energy from a moving fluid. The fluid is water, the same as the hydro turbine. In the case of a hydro turbine the water remains in the liquid phase and neither its volume nor its temperature changes during energy extraction. In the case of the steam turbine, energy extraction is from a gas, steam, rather than a liquid and involves both the pressure and the temperature of the fluid falling. This has a profound effect on the turbine design.

Both hydro and steam turbines exist in two broad types: there are impulse turbines which extract the energy from a fast-moving jet of fluid and reaction turbines which are designed to exploit the pressure of a fluid rather than its motion. A hydro turbine will be of one design or the other. In a steam turbine the two principles may be mixed in a single machine and they may even be mixed in a single turbine blade.


It is impossible to extract all the energy from steam using a turbine with a single set of turbine blades. Instead, a steam turbine utilises a series of sets of blades, called stages. Each stage is followed by a set of stationary blades (usually called nozzles) which control the steam flow to the next stage.

A single steam turbine stage consists of a set of narrow blades projecting from a central hub. (In concept, it is something like a steam windmill.) Ten or more sets of blades can be mounted on a single steam turbine shaft. This combination of shaft and blades is called a rotor. The turbine stages are separated by carefully designed stationary blades, or nozzles, which control the flow of steam from one set of rotating blades to the next. The precise shape of the blades in each set determines whether that set is impulse or reaction, or a cross between the two. The hub, blades and nozzles are enclosed in a close-fitting case to maintain the steam pressure.



In a steam turbine impulse stage, energy is extracted at constant pressure while the velocity of the steam falls as it flows across the blades. The steam is then expanded through a stationary control stage to increase its velocity again before energy is extracted from another set of impulse blades. In a steam turbine reaction stage, by contrast, both pressure and velocity of the steam fall as energy is extracted by the rotating blades.

Steam exiting the power plant boiler is at a high temperature and a high pressure. Both temperature and pressure fall as the steam passes through the turbine. The greater the temperature drop and the greater the pressure drop, the more energy can be captured from the steam. Consequently the most efficient power plants condense the steam back to water at the end of the turbine.

Even with a modern design it is impossible to capture all the energy from the steam efficiently with a single multiple-stage turbine. Coal-fired power plants use several. These are usually divided into high-, medium- and low-pressure turbines. The blades in these turbines get larger (longer) as the pressure drops; in fact, the low-pressure turbine may comprise several turbines operating in parallel to gain the most energy without making a single turbine impossibly large. All the turbines may be mounted on a single shaft, but it is common for the low-pressure turbines to be on a separate shaft rotating at a lower speed to reduce the forces exerted at the blade tips. Multiple turbines of this type can have aggregate outputs of over 1000MW.

As with boilers, the demands of modern power plant design have led to the development and introduction of high-performance materials that can cope with the extreme conditions encountered within a steam turbine. The high-pressure turbine blades have to be able to withstand extremes of both temperature and pressure and have to be able to resist the abrasive force of steam. At the low-pressure end of the turbine train the large size of the turbines means that the blade tip speeds are enormous, again requiring specially designed materials to withstand the centrifugal forces exerted on them.
A refinement which improves the overall efficiency is to return the steam to the boiler after it has passed through the high-pressure turbine, reheating it before delivering it to the medium-pressure turbine. Most modern steam turbine plants use this single reheat design (multiple reheat is also possible).
The theoretical maximum efficiency of a coal-fired power station is determined by the temperature difference between the steam entering the high-pressure turbine and the steam exiting the low-pressure turbine. The greater this temperature difference, the more energy can be extracted. With the most advanced technology, utilising the best boiler materials to achieve the highest-steam temperatures and pressures, a maximum efficiency of around 43–45% can be achieved. New supercritical designs may eventually push this as high as 55%. In the near future, however, the best that is likely to be achieved is something between 47% and 49%.

Generators

The turbine shaft, or shafts if there is more than one, are coupled to a generator which converts the rotary mechanical motion into the electrical energy that the plant is designed to provide. Generators, like steam turbines, first appeared during the nineteenth century. All utilise a coil of a conducting material, usually copper moving in a magnetic field to generate electricity.

The generators used in most power stations, including coal-fired power stations, are designed to deliver an alternating current (AC) to a power grid. An AC current is preferred because it allows the voltage to be raised or lowered easily using a transformer. For transmission of power over long distances it is preferable to use a very high voltage and a low current. The voltage is then reduced with a transformer before delivery to the consumer.

The need to generate an AC voltage determines the speed at which the generator rotates. This must be an exact multiple of the grid frequency (normally grids operate at either 50 or 60Hz). For grids operating at 50Hz the traditional generator speed is 50 cycles per second, or 3000rpm. The equivalent 60Hz machine rotates at 3600rpm. This speed, in turn, determines the operating speed of the steam turbine. Large low-pressure steam turbines may operate at half these speeds.


Generators may be as large as 2000MW, and large generators are normally built to suit a particular project. Modern generators operate with an efficiency of greater than 95%. The remaining 5% of the mechanical input energy from the turbine is usually lost as heat within the generator windings and magnetic components. Even though the percentage is small, this still represents an enormous amount of energy; perhaps 50MW in a 1000-MW machine. Hence generators require very efficient cooling systems in order to prevent them overheating. Avariety of cooling mediums are used, including hydrogen which is extremely efficient because of its low density and high specific heat.

The broad outline of generator design has changed little over a century. However new materials have improved efficiencies. The latest developments involve the use of superconducting materials to reduce energy and increase efficiencies.

Coal Fired Steam Power Plant Video




Coal-Fired Steam Power Plant Reference Books:



Steam Plant Operation
Steam Plant Operation
Steam Turbines: Theory and Design
Steam Turbines: Theory and Design

Steam Plant Calculations Manual, 2nd Edition (Dekker Mechanical Engineering, No. 87)
Steam Plant Calculations Manual,...
 
Power Plant Engineering
Power Plant Engineering
     

HYDRO POWER PLANT

Wednesday, March 31, 2010 | | 23 comments

Sponsored Ads

Use of hydropower peaked in the mid-20th century, but the idea of using water for power generation goes back thousands of years. A hydropower plant is basically an oversized water wheel. More than 2,000 years ago, the Greeks are said to have used a water wheel for grinding wheat into flour. These ancient water wheels are like the turbines of today, spinning as a stream of water hits the blades. The gears of the wheel ground the wheat into flour.

Hydropower plants harness water's energy and use simple mechanics to convert that energy into electricity. Hydropower plants are actually based on a rather simple concept -- water flowing through a dam turns a turbine, which turns a generator.

Worldwide, hydropower plants produce about 24 percent of the world's electricity and supply more than 1 billion people with power. The world's hydropower plants output a combined total of 675,000 megawatts, the energy equivalent of 3.6 billion barrels of oil, according to the National Renewable Energy Laboratory. There are more than 2,000 hydropower plants operating in the United States, making hydropower the country's largest renewable energy source.

Here are the basic components of a conventional hydropower plant:



Hydropower plant parts


Dam

- Most hydropower plants rely on a dam that holds back water, creating a large reservoir. Often, this reservoir is used as a recreational lake, such as Lake Roosevelt at the Grand Coulee Dam in Washington State.


Fig 1.  Dam

Intake

Gates on the dam open and gravity pulls the water through the penstock, a pipeline that leads to the turbine. Water builds up pressure as it flows through this pipe.

Turbine

The water strikes and turns the large blades of a turbine, which is attached to a generator above it by way of a shaft. The most common type of turbine for hydropower plants is the Francis Turbine, which looks like a big disc with curved blades. A turbine can weigh as much as 172 tons and turn at a rate of 90 revolutions per minute (rpm), according to the Foundation for Water & Energy Education (FWEE).

Power Developed by a Turbine


Pt = 9.81 x Q x H x ? (KW)
where:
Q = Discharge, m3/sec
H = Net Head, m
h = Efficiency of Turbine

Types of turbine:


Kaplan

Fig 2 Kaplan Turbine

* Power: 100 Kw to 7 Mw
* Head: from 1.80m to 25m
* Runner blades : 4 /5 /6
* Diameter: 700 to 4000mm
* Simple or double regulation
* Arrangement:
* Vertical
* S type
* Horizontal ( Pit)
* Inclined simple regulated
* Syphon intake

Francis


Fig 3. Francis Turbine

* Power: 100 Kw to 15 Mw
* Head: from 15m to 200m
* Diameter: 250 to 3500mm
* Arrangement:
* Vertical shaft
* Horizontal shaft
* Semi spiral casing or full spiral casing
* Double francis (2 runners )


Pelton


Fig 4. Pelton Turbine

* Power: 100 Kw to 10 Mw
* Head: from 100m to 1000m
* Diameter : up to 1800mm
* Arrangement:
* Vertical 3 jets /4 jets
* Horizontal 1 jet /2 jets
* Double (horizontal 4 jets)



Generators

The heart of the hydroelectric power plant is the generator. Most hydropower plants have several of these generators. As the turbine blades turn, so do a series of magnets inside the generator. Giant magnets rotate past copper coils, producing alternating current (AC) by moving electrons.

Fig 5. Generator

The generator, as you might have guessed, generates the electricity. The basic process of generating electricity in this manner is to rotate a series of magnets inside coils of wire. This process moves electrons, which produces electrical current.


Inside a hydropower plant generator

The Hoover Dam has a total of 17 generators, each of which can generate up to 133 megawatts. The total capacity of the Hoover Dam hydropower plant is 2,074 megawatts.


Each generator is made of certain basic parts:

* Shaft
* Excitor
* Rotor
* Stator

As the turbine turns, the excitor sends an electrical current to the rotor. The rotor is a series of large electromagnets that spins inside a tightly-wound coil of copper wire, called the stator. The magnetic field between the coil and the magnets creates an electric current.

Transformer

The transformer inside the powerhouse takes the AC and converts it to higher-voltage current.

Power lines

Out of every power plant come four wires: the three phases of power being produced simultaneously plus a neutral or ground common to all three. (Read How Power Distribution Grids Work to learn more about power line transmission.)

Outflow

Used water is carried through pipelines, called tailraces, and re-enters the river downstream. The water in the reservoir is considered stored energy. When the gates open, the water flowing through the penstock becomes kinetic energy because it's in motion. The amount of electricity that is generated is determined by several factors. Two of those factors are the volume of water flow and the amount of hydraulic head. The head refers to the distance between the water surface and the turbines. As the head and flow increase, so does the electricity generated. The head is usually dependent upon the amount of water in the reservoir.

The Largest Hydroelectric Power Plant:


  • The largest hydroelectric power plant in the world is the Itaipu power plant, jointly owned by Brazil and Paraguay. Itaipu can produce 12,600 megawatts.
  • The second largest hydroelectric power plant is the Guri power plant, located on Caroni River in Venezuela. It can produce 10,300 megawatts.
  • The largest U.S. hydroelectric power plant is the Grand Coulee power station on the Columbia River in Washington State. It can produce 7,600 megawatts and is currently being upgraded to produce 10,080 megawatts.

Watch hydro power plant video:







Relevance Books

 
  
Hydro-Electric Power...
Hydro-Electric Power...
Micro-Hydro Design Manual: A Guide to Small-Scale Water Power Schemes
Micro-Hydro Design Manual

Renewable Energy
Renewable Energy

Serious Microhydro: Water Power Solutions from the Experts
Serious Microhydro
 

Custom Search